MANGU HIGH SCHOOL TRIAL 2 MOCK 2021 MATHEMATICS PP2 MS
1. | (x- y) ( x+y) ( 3282 – 3272) ( 3282 + 3272) 65540 | M1 M1 A1 | |
3 | |||
2. | Tan x = is positive 3rd quadrant Then sin x = –3 5 4 h = Ö 42 + 32 = Ö 25 = 5 Sin x = –3 5 Cos x – sin x = –4 – –3 = –3 5 5 5 = -1 5 | B1 M1 A1 | Identification the hypotenuse Cao accept (-0.2) |
3 | |||
3. | 16 + 6(- ½ x ) + 15(- ½ x )2 + 20(- ½ x )3 = 1 – 3x + 15x2 – 5 x3 4 X = -0.04 1-3 ( -0.04) + 15 (-0.04)2 5 ( -0.04) 3 4 4 = 1 + 0.12 + 0.006 + 0.000616 = 1.12616 = 1.1262 | M1 M1 M1 A1 | Forü simplification Forü substitution of x |
4 | |||
4. | a + ar3 = 140 2 64 + 64 r3 = 140 2 | M1 M1 A1 | |
3 |
5. | a2 = b2d2 b2 –d a2b2 – a2d = b2d2 a2b2 – b2d2 = a2d b2(a2 – d2) = a2d b2 = a2 d a2 – d2 | M1 M1 A1 | ü sq on both sides CAO |
3 | |||
6 | P = aQ + Ö Q P = 16a + 4b ( 500 = 16a + 4b) (800 = 25a + 5b) 2500 = 80a + 20b 3200 = 100a + 20b -700 = -20a 35 = a Then b = -15 Equation connecting P and Q p = 35Q – 15 ÖQ | M1 M1 M1 A1 | For ü equation For ü formation of simultaneous equations For ü values of both a and b |
4 | |||
7. | M1 A1 | ||
2 | |||
8 | 4.562 x 0.38 = 1.73356 4 Ö1.73356 = 1.14745 ¸0.82 = 1.3993 = 1.4 | M1 M1 A1 | |
3 | |||
9. | 18 x 64 x 5 24 x 80 6 x 64 8x 16 3 days | M1 M1 A1 | Forü simplification |
3 | |||
10. | True value = Ö1 + n = 1.44 = 1.2 Approx. value 1 + n = 1 + 44 = 1.22 2 2 = 1.22 – 1.2 = 0.02 x 100 = 1.2 = 1.67 % | M1 M1 A1 | |
3 | |||
11. | M1 M1 A1 | For matrix equation Forü forming of simultaneous equation For values of a, b and c ( correct) | |
12. | 2x2 – 2x + x -1 ( x + 1 ( x – 1) 2x ( x – 1 ) + 1 ( x- 1) ( x + 1 ) (n- 1 ) = ( 2x + 1) ( x + 1 ) = 2x + 1 x + 1 | M1 M1 A1 | |
3 | |||
13 | cm = 25000cm1cm = 250m1cm = 0.25 1cm2 = 0.0625 20cm2 = 20 x 0.0625 = 1.25/ cm2 | M1 M1 A1 | |
3 | |||
14. | AB . BC = DC -2 5: BC = 36 BC = 36 5 = 7.2 cm | M1 M1 A1 | |
3 | |||
15. | Log108 + Log10750 – Log106 Log10 Log10( 8 x 750) 6 = Log101000 = 3 | M1 M1 A1 | |
3 | |||
16. | M1 M1 M1 A1 | ||
4 |
17 | Taxable income 115 x 8570 = 9855.50 100 9855.50x 12 p.a 20 5913.30 Tax | M1 A1 M1 M1 M1 A1 M1 A1 M1 A1 | |
10 | |||
18. | i) q ( 2pR cos q) 360 = 60 x 2 x 22 x 6370 cos 60 360 7 = 1/3 x 22 x 910 x 0.5 | M1 A1 B1 M1 M1 A1 B1 | |
19 | 10 | ||
10 |
20. | X 30 60 120 180 240 270 Sin x 0.5 0.87 0.87 0 -0.87 -1.0 2 cos x 1.73 1.0 -1.0 -2 -1.0 0 Y 2.23 1.87 -0.13 -2 -1.87 -1.0 | B2 S1 P1 C1 B2 L1 B2 | For all 6 values of yü B1 for at least 4 ü Appropriate scale use ü plotting ü curve Points identified and stated B1 only stated ü line Points identified and stated B1 only stated |
10 | |||
21 | B2 | P P prob, tree | |
a) P ( RR) = 3/12 x 2/11 1/22 b) P(IR) = RW or RB or WR or BR 15/132 + 12/132 + 15/132 + 12/132 9/22 p( At least white Ball ) = P(RW) + P(WR) + P(WW) + P ( WB) + P(B) 15/132 + 9/132 + 20/132 + 20/132 + 20/132 = 84/132 or 7/11 P(RR or WW or BB) = 6/ 132 + 20/132 + 12/132 = 19/66 | M1 A1 M1 A1 M1 A1 M1 A1 | Or equivalent 0.04545 Or equivalent 0.4091 Or equivalent 0.6364 Or equivalent 0.2424 |
22 | X -2 -1 0 1 2 3 4 5 Y 0 6 10 12 12 10 6 0 | B2 S1 P1 C1 M1 A1 M1 M1 M1 A1 | 8 values ü B1 at least 6ü Appropriate scale use ü plotting ü curve |
10 |
23. | a) i) AC2 = 82 + 62 = 100 AC = 10cm ii) AF2 = 102 + 52 = 125 AF = 11.18cm b) Tan x = 5/11 = 0.5 x = 26.52° Tan x = 5/6 = 0.8333 x = 39.7° | M1 A1 M1 A1 B1 M1 A1 B1 M1 A1 | Sketch Sketch |
10 |
24 | | Inequalities | B1 B1 B1 B1 B1 ü shading and line B1 shading and line drawn B1-for ü shading and line drawn B1 B1 B1 |
10 |